
ControlAltDelete 22 First Quarter 2003

Feature

Setting up Visual studio 6 IDE for
MDL programming

by Stanislav Sumbera

Introduction
MicroStation Development Environment (MDE) pre-

sented on installation of MicroStation unfortunately
doesn�t contain any Integrated Development Environment
for developing MDL programs. Although you may write
MDL code in any text editor, I guess MDL programmers
in the 21st century deserve more, at least :

� File management
� Syntax highlighting
� Automatically Completing Statements - Intellisense
� Context help
� Comprehensive visual debugger
� Optionally version management for large projects

Using these features will certainly help you in devel-
oping process and will positively affect the quality of your
MDL application. Although you may use any IDE I would
recommend to use Visual Studio v.6 or Visual Studio.NET
respectively. The main reason is that you will get with Vis-
ual Studio compiler used by MicroStation make files to
compile MDL into native code (DLL).

Setting up Visual Studio v.6
Make sure you have installed Visual C++ v.6 with

service pack 5 and Microsoft Development Library
(MSDN). To set up IDE for MDL several steps need to be
done. We will go through them. step by step.

Step 1. MDL language syntax highlight-
ing

MDL code is C code. We need Visual Studio to rec-
ognize file extensions of MDL related files as C-based
files.

These extensions include .mc; .fdf; .r; .mt;. The
file extension information is stored in the registry key: See
code below.

Run file VC_MDL_HIGHLIT.reg from download
package for this article to update registry entries or extend
registry manually by running regedit.exe.

� Now run Visual Studio, open any .mc file via File/
Open menu and see highlighting syntax of code.

� Go to Tools/Options... menu and select Format tab
page.

� In the Category list select Source Windows; in the
Font option list choose Courier New font with size
10pt.

� Select in Colors option list type of code text and use
Foreground and Background items to set its corre-
sponding colors as you wish. Check the Keyword
type to be colored.

Step 2. Set MDL built- in functions to be
highlighted as keywords

Wouldn�t be nice to have highlighted all MDL built-
in functions as keyword? We may do this by populating
file usertype.dat with all keyword names - in this case all
mdl functions. All MDL API functions (even undocu-
mented) may be listed by runing mcomp-zb.

The file usertype.dat must be subsequently copied
into the same directory where msdev.exe resides. By
default, this will be C:\Program Files\Microsoft Visual
Studio\Common\MSDev98\Bin. You may use the file in
download package. Optionally, you may add there the
MDL types or constants. Then restart Visual Studio, open
an arbitrary .mc file and see keyword-color of all mdl
functions.

[HKEY_CURRENT_USER\Software\Microsoft\DevStudio\6.0\
Text Editor\Tabs/Language Settings\C/C++]
"FileExtensions"="cpp;cxx;c;h;hxx;hpp;inl;tlh;tli;rc;rc2;mc;fdf;mt;r"

First Quarter 2003 23 ControlAltDelete

Step 3. Creating MDL project
� Select File/New to bring up the list shown in Figure 1

below.

Figure 1 The New dialog

� Select Project tab page. From the available projects,
choose Makefile. On the right side of the dialog, in
the Location edit item, select the parent folder of you
project

� Type your project name into the Project name edit
item. Visual Studio will make the folder according to
the Project name (or will use the existing one if the
folder with this name already exists).

� Toggle On option Create new workspace. Press OK.

Next wizard dialog asks for Command line for
DEBUG configuration. Visual Studio has basically two
configuration for running compilation process: Debug
used for debug compilation, and Release, used for final
release code.

You may use them for compilation, however I would
recommend to use only one configuration and directly edit
batch and make file for any necessary changes in build
process. Delete any content there and type in your project
name plus .bat extension, for instance treexmpl.bat. This
will be a batch file for running MicroStation compilation.

Then type into the Output your final application
name, e.g. treexmpl.ma, and you may leave Rebuild All
Switch as it is. Press Finish button.

Wizard creates workspace and project with three vir-
tual folders: Source Files, Header Files and Resource
Files. Now you may add source files to appropriate folders
by clicking right mouse on item and selecting Add Files
to Folder.

After adding all files you should be able to see Class
View with all structures and functions used in your
project.

This is very useful for navigation through the code. If
Wizard Bar tool box is presented on upper pane (see menu
Tools/Customize/Toolbars) you may then quickly access
function from option list there.

Figure 2

Visual Studio also helps with statement completition
features (intellisense) of declared functions and types. If
you have checked in Tools/Options dialog in Editor tab
options for statement completition you may see parame-
ter list when typing a function, for instance. See Code 2
below.

Code 2

ControlAltDelete 24 First Quarter 2003

Or trying to access members of data structure:

Figure 3 Data structure

Step 4. Enabling intellisense for MDL
built-in functions

Unfortunately intellisense does�t work implicitly for
built-in mdl functions. Wouldn�t be this a nice feature
when programming with MDL? Fortunately there is a
trick how to force Visual Studio to show parameter info
and data members of mdl functions. For each workspace
Visual Studio stores browse information in binary .ncb
file. Browse information hold records for each entity and
where it�s used in our project files.

This data are used by intellisense to offer parameter
info when typing a function. Intellisense works fine for
function definition. MDL built-in function are declared in
fdf files. So we need to temporarily change declaration to
definition and include them into Visual Studio project so
intellisense would catch them. I have prepared application
MDLtool which will do all necessary steps for you to ena-
ble intellisense for your MDL project as may be seen in
Code 3 below.

Step 5. Integrating MDL help with MSDN
context help

Very often we need to search particular keyword or
function definition in the Help documentation or in any
other supplied help files. Visual Studio provides MSDN
help containing all necessary information for developers
under Windows platform. Since MDL is C based language
we may find there, for example, a useful C code reference.

But I guess you would like to have there a MDL help
reference and MDL programmer's guide help files too.
Then we need to integrate supplied Bentley help files with
MSDN help files. You may use for this purpose free help
integration utility called MSDNIntegrator which is
stored in download package to this article. Run this tool
and specify chm and chi MDL help files. Only problem
you need to overcome is how to obtain CHI file. CHI file
may be re-generated from recompilation of original CHM
file via HTML HELP workshop or other tool (like FAR).

We hope Bentley will soon deliver CHI files together
with their CHM help files. In this manner you may build
up your knowledge base containing all necessary informa-
tion for software development. After integration run Vis-
ual Studio, enter any mdl function and while standing on
the function with cursor pres F1. MSDN help will be dis-
played, after re-indexing its content a description for the
function should be displayed. You may add other
resources for rich knowledge base as is shown on figure
below.

Figure 4 Help files

Step 6. MDL tool - advanced customiza-
tion of Visual Studio

Macros are pretty cool in Visual Studio. Actually you
may write your own VBScript macros to automate tasks
when writing MDL code. Macros can reduce boring
iocopy-paste-renamel. workflow in development process.
Moreover you may create for your development team code
templates and wizards to automate common steps.

As an example I have made simple prototype of such
a functionality which you may freely use from the down-
load package.

� Copy the MDLtool.dll into the directory Com-
mon\MSDev98\AddIns and copy templates to the
Common\MSDev98\template directory respectively
founded under Visual Studio base directory (by
default it will be C:\Program Files\Microsoft Visual
Studio).

Code 3

First Quarter 2003 25 ControlAltDelete

� Restart you Visual Studio and go to Tools/Customize
menu. The Customize dialog box will appear. Go
to tab page Add-ins and Macro files and check in
MDL tools in list item Add-ins and macro files.

An MDL toolbar will be displayed. Now you may
create MDL application on 2 clicks!

Figure 5 Customize toolbox

Figure 6 below

Final words
Stanislav Sumbera, Ph.D. is a LIDS and MicroSta-

tion software developer for the Berit group (www.berit.
com). You may contact Stanislav Sumbera at stanis-
lav@sumbera.com. The code may be downloaded from
www.sumbera.com.

 CAD

Short description of dialog items:

Project name: enter the name of you MDL project
Project location: Chose parent location for you project
Add to workspace: Check this option if you need to add newly created project into the workspace.
 If not checked a new workspace will be created for your project

MicroStation version: Select from combo box target MicroStation version for your MDL application.
Template location: Only If you have different templates change the folder to the desired one
Perform build : Check-in this option if you request build after wizard is finished
Project Type: Select the MDL project type you are going to generate
Generate files: Check-in any files you want to be generated.

Figure 6

TIPS IN HERE

