
By Stanislav Sumbera

MicroStation V8 provides strong support for writing applications in
native form. This makes it possible to write and debug C/C++ applica-
tions inside an Integrated Development Environment (IDE), such as
Visual C++. This ability will likely encourage developers to write
graphical user interface modifications in native code. That raises a
question: How does one effectively write native GUI items for the
MicroStation environment? This article offers a short introduction
on using native GUI in MicroStation.

The Windows Application Programming Interface (Win32 API)
provides a rich set of user interface functions. These functions are
very similar to traditional mdlDialog_ functions for use with windows,
dialogs, items, etc. A large portion of the Win32 API was encapsulated
into classes called MFC—Microsoft Foundation Classes. The MFCs
make up an application framework based on C++, a framework on
which you can build your native user interface.

Visual C++ provides several utilities for rapid application
development: Application Wizard for starting projects; Class Wizard
to help manage MFC classes; resource editors to visually create user
interface and more. It is beyond the scope of this article to describe
these utilities in detail. If you need to learn more, check out MSDN,
the Microsoft Developer Network.

Instead, let’s go step by step to create a simple non-modal dialog
for MicroStation using Visual C++ v.6.0 and MFC. First, create a new
project called nativeDlg using MFC AppWizard (dll). In Wizard
Options, choose “Regular DLL using shared MFC DLL.” This will
give you the skeleton of your native DLL code using MFC libraries.

Next, create a simple window class called CNativeFrame using
CWnd as the base class. This step can be done simply in Class Wizard
by pressing the “Add Class” button. The class will provide a frame
window for all other native dialogs or items.

To open the frame window, you will need an export function,
which will be called by an MDL invoker:

extern "C"

{

// exported DLL function for opening dialog box

__declspec(dllexport) int OpenDialog(void){

AFX_MANAGE_STATE(AfxGetStaticModuleState());

HWND parent = frameWin.OpenFrame("Frame
Window",400,180)

return true;

}}

The OpenFrame method is defined in class CNativeFrame

and creates a window using methods of base CWnd class
AfxRegisterWndClass and CreateEx. Your MDL invoker could be
very simple, you need only to import the function OpenDialog via
dynamic link specification, declare it as nativeCode in MDL source
and call it in the main function. Now run your code, and you
should see your non-modal frame window.

You may not be satisfied with the behavior of the window—it has
no parent window, it doesn’t behave as a child MicroStation window.
To solve the problem, you must set the parent window of your frame
window to the MicroStation main window. The function used in the
example code to get the MicroStation main window enumerates all
created windows, checks if the window is a MicroStation one and
compare process ID of the founded window with the process ID of
your DLL. If all criteria are fulfilled, the function returns the
MicroStation main window.

Unfortunately, another problem may come concerning
minimization and maximization of the frame window. When a
window is minimized, it disappears from the visible area of the
MicroStation window. If a window is maximized, it covers the whole
area including the menu and status bars. This behavior can be easily
changed in the window message event handler WM_SIZE.

void CNativeFrame::OnSize(UINT nType, int cx, int cy)

{

if (nType == SIZE_MINIMIZED)

MoveWindow(...);

else if (nType == SIZE_MAXIMIZED)

MoveWindow(...);

}

Writing MFC-based dialogs
for MicroStation V8

36 M S M JANUARY

JANUARY M S M 37

Now you have a nice MFC frame window but without any items.
This would be the second task, to create a dialog and items using
Resource Editor and Class Wizard to join dialog resource with the
new created class CNativeBox. To display the dialog correctly, set its
parent to frame window:

//..in OpenDialog function

HWND parent = frameWin.OpenFrame("Frame Window",400,180)

box.Create(IDD_NATIVE_DIALOG,CWnd::FromHandle(parent));
return box.ShowWindow(SW_SHOW);

In this version, the TAB key between dialog items doesn’t work. The
solution to this problem is well described on MSDN. For a modeless
dialog box to process a TAB key, the message pump needs to call the
IsDialogMessage API. However, if you are writing a DLL and do not
have access to the application’s source code, you cannot modify the
message pump to do this. To work around this problem, use the
WH_GETMESSAGE hook to capture the keystroke messages and
call the IsDialogMessage API. If IsDialogMessage returns TRUE,

then do not pass the message on to the message pump. Set the hook
when handling WM_INITDIALOG and unset it when handling the
WM_DESTROY message.

BOOL CNativeBox::OnInitDialog(){

CDialog::OnInitDialog();

hHook = ::SetWindowsHookEx(WH_GETMESSAGE,

GetMsgProc, NULL, GetCurrentThreadId());

return TRUE;

}

void CNativeBox::OnDestroy(){

UnhookWindowsHookEx(hHook);

CDialog::OnDestroy();

}

// hook function capturing dialog messages

LRESULT FAR PASCAL GetMsgProc(int nCode, WPARAM wParam,
LPARAM lParam)

{

LPMSG lpMsgd = (LPMSG) lParam;

AFX_MANAGE_STATE(AfxGetStaticModuleState());

if((nCode >= 0 && PM_REMOVE == wParam) &&

(lpMsg->message >= WM_KEYFIRST &&

lpMsg->message <= WM_KEYLAST) &&

(IsDialogMessage((HWND)box.m_hWnd, lpMsg))) {

lpMsg->message = WM_NULL;

lpMsg->lParam = 0;

lpMsg->wParam = 0;

}

return CallNextHookEx(hHook, nCode, wParam, lParam);

}

You may also add into the dialog any ActiveX component or call, via
OLE automation, MicroStation methods available in Visual Basic for
Applications. All you need to do is enable OLE in your DLL, add the
new class from the MicroStation template library (ustation.exe) using
ClassWizard and call your method:

_Application MSapp;

AfxEnableControlContainer();

OleInitialize(NULL);

MSapp.CreateDispatch("MicroStationDGN.Application",NULL);

MSapp.SetCaption("MicroStation with MFC");

Figure 1. MFC-based non-modal dialog with Excel ActiveX.

Creating non-modal dialogs based on MFC need not be difficult.
Utilizing all Windows features for GUI development gives us rich
possibilities to extend the current user interface. There are also many
ActiveX components we can easily add into MFC dialogs to create
rich, user-friendly modern GUIs for MicroStation. The examples given
in the article are for learning purposes, so I removed all error handling
and exception handling for shorter code. The code was tested on
MicroStation v8. 08.00.00.21.

Stanislav Sumbera is a MicroStation software developer for Bentley
Integrator Berit Group (www.berit.com), specializing in raster and seam-
less map visualization. The programming code in this article is offered
to the MicroStation community “as is,” without responsibility for its use
elsewhere. You may contact Stanislav Sumbera at sumbera@berit.cz.

msm

