
By Stanislav Sumbera

[Editor’ Note: The arrival of MicroStation V8 and its support for
Microsoft Visual Basic for Applications opens an entirely new set of dual-
language communication issues beyond the scope of this article. Support
for JMDL and MDL continues with the release of MicroStation V8.]

The C-style MDL language has been available to MicroStation
developers for several years. Gigabytes of codes have been written
worldwide in the form of utility applications (.ma files), shared
libraries (.msl files), static libraries (.ml files) and resource files (.r)
for graphic interfaces, command tables and many other functions.
More importantly, this MDL code has been maintained, tested and
refined over thousands of hours of use. There is also considerable
native-code DLL written to perform time-critical tasks in
MicroStation. Such code can be easily incorporated into MDL
programs via the dlm set of functions.

On the other side, there is the new, modern, easy to learn,
platform-independent and object-oriented language Java and its
JMDL extension in MicroStation/J. Java enables rapid application
development with many advantages for MicroStation programmers
(pure Java classes from the third-party vendors, safety in memory
management, scalability). However, Java or JMDL applications seem
to have some deficiencies. For instance, they do not look and feel like
MDL applications. The standard Java class library does not support
some platform-dependent features rarely required by MicroStation,
and their performance is low in situations where time-consuming
operations need to be optimized.

MDL programmers had many questions when Java was first
integrated into MicroStation/J: “How do we communicate between
MDL and Java applications?” “How do we access low-level code
from the Java environment?” and “How do we recall the Java code
from MDL?”

The Java development kit delivered with MicroStation/J contains
documented and supported interface specifications that allow programs
written in other languages to be called up from the Java code that runs
within the Java Virtual Machine. Programs in other languages are able
to call up methods and access objects written in the Java language
using the Java Native Interface (JNI).

Both MDL and Java have full, bi-directional access to the native
code. But it would not be sufficient to make the communication easy
if the virtual machines for interpreting these two different codes would
run in separate process space. Fortunately, MDL runtime (ustation.dll)
and Java/JMDL runtime (javai.dll) are mapped and run within the
process address space of MicroStation (ustation.exe). That is why the
DLL native code attached to the Java application and then to the
MDL application will receive only one DLL_PROCESS_ATTACH
message from the first one. Thus, we can speak about an in-process
communication between MDL and Java/JMDL (Figure 1.)

Figure 1. Types of communication between Java/JMDL and MDL

Use the jmdl_import keyword to call MDL or DLL
The easiest and most straightforward way of invoking a shared library
written either in the MDL or a native code from a JMDL code is to
use a mechanism that is very similar to the J/Direct technology. The
jmdl_import keyword is a part of a native function declaration in
which we specify the MDL or DLL library name and their exported
functions which we are going to invoke. The jmdl method succeeding
the jmdl_import statement must be declared as static.

Java/JMDL communication with
MDL applications

30 M S M DECEMBER

comm
u

n
icatio

n

DECEMBER M S M 31

An example of a JMDL method is mdl_printPromp which refers
to a mdl shared library (mdlPrompt) and its function (printPrompt) :

jmdl_import

(mdl = "mdlPrompt", name = printPrompt)

public static native void

mdl_printPrompt(byte *showText);

Similarly, in order to invoke a native function from DLL, you can
use the dll = <name of the native code library> instead of mdl =...:

jmdl_import

(dll = "dllPrompt", name = printPrompt)

public static native void

dll_printPrompt(byte *showText);

Using Java Native Interface to interact with MDL
To use the JNI for accessing the MDL code, we need an intermediate
native layer for passing calls from Java to MDL and vice versa. This
DLL “gateway” consists of the JNI interface to interact with Java on
one side, and, on the other side, there must be an interface to commu-
nicate with the MDL code in a way of a dynamic link module.

For better understanding of the following codes and description
of technology, Figure 2 is a diagram of calling between MDL and Java,
with chapter numbers for particular areas of interaction.

Figure 2. Function calls between Java and MDL.

Using Java Native Interface to invoke the DLL function
The JNI is quite a rich application interface that enables the interac-
tion between the native code and Java. On the Win32 platform, such a
native code is represented by a regular DLL with exported functions,
which we are going to invoke. Through the JNI it is possible to:

• Call Java methods
• Call native methods
• Operate with a Java object
• Process exceptions
• Load classes and obtain their information

Suppose there is a class which will invoke a function in a native
library called nativeLib.dll. First, Java must load the DLL library into
memory and link to it by calling the System.loadLibrary. The only
parameter of the method is a name of the desired dynamic library. The
specified DLL must be stored in one of the system path directories or
in the same directory containing a Java class file. The Java virtual
machine will automatically append the appropriate extension according
to the given platform, so you do not need to write “.dll” extension
there. Here's an example of the method:

static {

// loading the library nativeLib.dll

System.loadLibrary("nativeLib");

}// declaration of a native function

public native void callDllFunc(short limit);

Then to implement the Java method in C++, you need to create
a “Java to C++” mapping header file with function prototype of
given method. The task could be done simply by a standard Java
Development Kit (JDK) utility, javah.exe with the -jni command
parameter and the name of the class that will be processed. The result
is a declaration of native function placed in the header file named as
the processed class. For instance, we can enter a command javah - jni
JavaJni, and the header file “JavaJni.h” will contain a prototype for
the function callDllFunc in the C++ code :

#include <jni.h>

extern "C" {

// declartion of native function

JNIEXPORT jint JNICALL Java_JavaJni_callDllFunc

(JNIEnv *, jobject, jshort);

}

The header file begins with an include directive for jni.h. In Jni.h
there are, among other things, the data types and function prototypes
of the JNI defined. The JNIEXPORT macro is defined in jni_md.h
for the Win32 platform as __declspec(dllexport). Such a function dec-
laration means that you do not need an additional module-definition
(.DEF) file of the exported functions. The JNICALL is expanded into
__stdcall, which expresses the definition of the calling convention for
Win32 API functions. The JNI imposes a naming style on the native
methods through which the Java Virtual Machine links the Java calls to
the native methods. So the name of the native language function that
implements a native method consists of the Java keyword, followed by
a package name (here we have a default package, hence, in our exam-
ple, this part is omitted), then the class name JavaJni and, finally, the
name of the native method callDllFunc. Between each name part is an
underscore "_" separator. A question may come up about the number

Java/JMDL

32 M S M DECEMBER

of parameters in our Java_JavaJni_callDllFunc prototype where there
are three arguments in total instead of only one. These two additional
arguments are passed from Java to all native functions using the JNI.
The first of them is the Java Environment interface pointer containing
all the necessary function pointers for the native processing of parame-
ters and objects passed from Java. The second one is, in this case, a
reference to the current instance of the JavaJni object—an equivalent
to “this” in Java. These two parameters make a gateway to call back the
Java method but only in the current context of calling. The third one
is a corresponding argument to short type passed from the Java code.

The example code nativeLib.cpp given below, in which we imple-
ment the Java native function with an only short parameter, is written
in C ++ and displays the parameter value using the Win32 API:

#include "stdafx.h"

// header file generated by the javah utility

#include "JavaJni.h"

BOOL APIENTRY DllMain

(HANDLE hModule, DWORD

dwReason,LPVOID lpReserved){

return TRUE; // dll entry point

}

JNIEXPORT jint JNICALL Java_JavaJni_callDllFunc

(JNIEnv * env,jobject jthis, jshort limit){

char message[255];

sprintf(message,"Native Dll recieved value

%d",limit);

// displaying a message

::MessageBox(NULL,message,"nativeLib",MB_OK);

// call to mdl will be explained soon

return (jint) dll_callMdlFunc(limit);

}

Calling the Java method from the native code
To invoke the Java non-static method from a native code, we need to
do a little bit more of programming than before. First of all, we need
to design a JavaJni class to implement the calling from the native code
and compile it with javac utility to have a JavaJni.class. The class dis-
plays a simple dialog with a label item where will be reflected passed
parameters from a native function :

import java.awt.*;

public class JavaJni extends Frame{

Label label =

new Label ("Label",Label.CENTER);

static JavaJni javaObj =

new JavaJni("Java dialog");

public JavaJni(String title){

// constructor to display a dialog box

super(title);

resize(150,100);

setBackground(SystemColor.control);

add(label); show();

}

public int onMdlCall(short limit){

// receiver method of a MDL call via DLL

label.setText

("Native call, value = " +limit);

return 1;

}

public static void main(String[] args) {

javaObj.show();

}

}

Now you are prepared to implement calling from a native
method. The necessary steps are:

1. Get a Java Virtual Machine (JVM) pointer.
The JNI_GetCreatedJavaVMs function from the JNI library will
successfully process your request if the JVM has already been started.
The returned pointer will be used in the second task.

2. Get an interface pointer.
To obtain a valid interface pointer, a member function of the JVM
pointer called AttachCurrentThread needs to be invoked. The
function attaches the current thread to the JVM and returns the
JNI interface. If the thread has already been attached, no operation
is performed and only the valid interface pointer is returned.

3. Retrieve a class reference of the called method.
The JNI interface pointer received in the previous task includes
all the necessary functions to operate with the JNI. One of them is
FindClass which will realize the current task. The returned value is
a representation of the searched class.

4. Retrieve a method and object identifier.
A method and object identifiers can be obtained from within a class.
The identifier is requested when calling up the method. The methods
of the JNI called GetMethodID and GetStaticFieldID accept the class
object we received in the previous step, the method or object name of
the Java code and its signature as parameters. To find out what signa-
ture is used for the given method, we need to run javap utility from
JDK as follows: javap -s JavaJni. Then, in the commentary below the
method, we will find its signature. For instance, the public native int
onMdlCall(short) method has the “(S)I” signature. Similarly, we may
find the signature for a static javaObj object - “LJavaJni;”

comm
u

n
icatio

n

DECEMBER M S M 33

5. Obtain a requested instance of an object.
Because we designed the JavaJni object as a static one, we can use the
GetStaticObjectField function to get a reference to it. The input para-
meters are represented by the class and object identifier. The returned
value is represented by a reference to the static javaObj object.

6. Invoke the non-static method.
Now you know all the necessary gadgets to perform a call. There is
a special function for each type of the calling method in Java. In this
example, we have designed a method returning the integer type, hence
the CallIntMethod function is the right one. The input arguments
must be represented by the object reference from the previous step,
then the method identifier and the parameter expected by the Java
method, in our case represented by the jshort value.

Now add into the file nativeLib.cpp used before as an example
of calling the Java method onMdlCall via native function
dll_javaMethodCall :

int JNICALL dll_javaMethodCall(short limit)

{

JavaVM *jvm; /* denotes a Java VM */

JNIEnv *env; /* point to java interface */

jsize nVMs; /* number of created JVM, should

be 1 */

/* 1.*/ jint res =

JNI_GetCreatedJavaVMs(&jvm,(jsize)1,&nVMs);

/* 2.*/ res =

jvm->AttachCurrentThread(&env,NULL);

/* 3.*/ jclass cls =

env->FindClass("JavaJni");

/* 4.*/ jmethodID mid = env->GetMethodID(cls,

"onMdlCall", "(S)I");

/* 4.*/ jfieldID fid =

env->GetStaticFieldID(cls, "javaObj",

"LJavaJni;");

/* 5.*/ jobject obj =

env->GetStaticObjectField(cls, fid);

/* 6.*/ return =

env->CallIntMethod(obj, mid,limit);

}

The full interaction between Java and the native code has been
achieved. You can call up native functions from the Java environment
as well as Java methods from the native code. Now the task is to create
a bridge in the native code for interaction with the MDL code.

Designing a native code to interact with MDL
A technology for communicating between the MDL code and DLL is
well-known and is described in the MicroStation help texts. Functions
from the DLL code can be imported into the MDL code by declaring
a function with the nativeCode specification. The native code is able to
invoke MDL as well, via the documented dlmSystem_callMdlFunction
function.

Let’s create a C++ file “MDLLib.cpp” to operate with MDL. A
first function dll_setMdlFuncCall accepts the mdl function offset as
a parameter, gets a MDL task descriptor and saves them into a global
variable for later use. The second function dll_callMdlFunc will make
use of the saved variables and invoke a particular offset function of
the MDL task with one argument of the short type.

The MDLLib.cpp file :

#include "stdafx.h"

extern "C"{

// mdl communication include

#define winNT

#include "mssystem.fdf"

#include "dlmsys.fdf"

}

// Pointer to Call back the MDL module

mdlDesc *mdlDescP = NULL;

// offset to MDL function

MdlFunctionP funcOffset = 0L;

int __stdcall

dll_setMdlFuncCall(MdlFunctionP mdlFunc){

if ((funcOffset = mdlFunc) && (mdlDescP =

mdlSystem_getCurrMdlDesc()))

return true;

return false;

}

// Invoker of a MDL function

int __stdcall

dll_callMdlFunc(short limit){

if ((funcOffset) && (mdlDescP))

return dlmSystem_callMdlFunction

(mdlDescP, funcOffset,limit);

return false;

}

Finally, we need to create a module-definition file (.DEF exten-
sion) to provide the linker with information about exported functions
about the nativeLib.dll to be linked.

Java/JMDL

comm
u

n
icatio

n
The Export.def file exports two functions. The first one has

just been described above, the second one is the Java method invoker
function designed earlier in the article. Note that the previous JNI
function of Java_JNIgo_callDllFunc is exported automatically.

LIBRARY "nativeLib"
DESCRIPTION 'JAVA - MDL gateway library'

EXPORTS
dll_setMdlFuncCall @1 ; MDL function call back saver
dll_javaMethodCall @2 ; Java method invoker

Designing a MDL application to interact with DLL
Finally, design a MDL application to interact with the finished
nativeLib.dll. First map the exported DLL function to the MDL
import functions conventions. For native function references in MDL
code, the linker mlink.exe needs the Dynamic Link Specification object
file (.DLS extension for source and .DLO for the precompiled object).
This object is treated as a static library and is linked with an MDL
program. The MDL virtual machine automatically loads the specified
DLL defined in DLO file when MDL application is loaded. Compare
it to Java where the DLL must be explicitly loaded. The import.dls
file reflects the just-created file Export.def:

%Version 0x700

%ModuleName nativeLib

%Functions

dll_setMdlFuncCall

dll_javaMethodCall

%EndFunctions

%End

The steps to design MDL code so it can call DLL native functions
and also be called from the DLL are:

1. Add the native declarations to the global part of the mdl module
corresponding to the function declarations in the Import.dls file.

nativeCode int dll_setMdlFuncCall(ULong);

nativeCode int dll_javaMethodCall(short);

2. Create a function mdlOnJavaCall to be called from the native DLL
library nativeLib.dll by the function Java_JavaJni_callDllFunc, which
has been called by the Java class JavaJni from the method callDllFunc.

int mdlOnJavaCall (short limit){

char message[255];

sprintf(message,

"got request on %d,limit);

mdlDialog_openMessageBox

(DIALOGID_MsgBoxOK,message,

DIALOGID_MediumInfoBox);

// do some interations...

return TRUE;

}

3. Set the function hook offset of mdlOnJavaCall for the native code
in the main entry point of a MDL.

int main(int argc, char *argv[]){

// set a hook for DLL

dll_setMdlFuncCall((ULong) mdlOnJavaCall);

return TRUE;

}

break;

4. Finally, go the other way and make a call to the nativeLib.dll on
some user input event, or whenever you like to call up the native func-
tion dll_javaMethodCall, which will invoke Java method onMdlCall
from the class JavaJni.

case DITEM_MESSAGE_BUTTON:

// call a Java method via dll

dll_javaMethodCall(i); break;

Final words
The technology of interaction between the Java/JMDL virtual machine
and MDL gives us possibilities to utilize existing MDL code for this
new language platform without needing to rewrite an existing code
into Java. The programmer can concentrate on new features in Java
when designing new applications, without losing low-level accessing
capability of the existing software. The examples given in the article are
for learning purpose, so I removed all error handling and exceptions
handling for shorter code. The code was tested on MicroStation
v07.01.01.36; native library was compiled using Microsoft Visual
C++ 6.0.

Stanislav Sumbera is a MicroStation software developer for the Berit
group (www.berit.com) specializing in raster data and seamless map
visualization. The programming code in this article is offered to the
MicroStation community “as is.” You may contact Stanislav Sumbera
at stanislav.sumbera@berit.cz.

msm

Java/JMDL

34 M S M DECEMBER

