Feature

NET & VBA Interoperability In

MicroStation v8

by Stanislav Sumbera, Berit group, Czech Republic

Introduction

MicroStation v8 brings to developers among others
two practical features:

* Integration of Microsoft’'s Visual Basic for Applica
tion.

* Complete possibility to compile MDL code into
native DLL and use Visual Studio for debugging.

On Bentley newsgroup someone says that the letter
“L” in MDL now means Library not Language. Third time
lucky, Microsoft has recently released final version of
.NET framework and its SDK which defines a new plat-
form for software solutions.

This platform we my immediately use for MicroSta-
tion development as will be shown in the article. The key
feature of each new technology is often backward compat-
ibility or interoperability with the current code. We will
focus in this contribution to these features — mutual inter-
operability among different platforms accessible in Micro-
Station.

Interoperability overview

Figure 1 shows that the central point of intercommu-
nication is a Dynamic Link Library (DLL) which is capa-
ble to interact with different platforms. This could be one
of the good reason why to compile MDL code into DLL —
just to bein the “ centre”.

The upper right part of the picture was already dis-
cussed in article:” Java/Jmdl communication with MDL
application” (MicroStation Manager 12/2001). We will
give our attention to the VBA and .NET interoperability.

INET Interop

Services
4 \
COW RCW
An

Declare func

Figure 1 In-process interoperability schemain MicroStation

ControlAltDelete

36 Second Quarter 2002

Designing DLL native code for interoperability

We will go through code which demonstrate interoperability to point out some interesting techniques. The native
code handles up coming calls from VBA and .NET and invokes their procedures and methods.

The interoperability is designed through direct function pointers, thus make it more simpler for understanding.
The dIl library is called nativeLib.dll and is referred inVBA and .NET code below. The following steps to interact
with the DLL are common to VBA and .NET:

1. Calling exported functionin any DLL isamost trivial — you only need to declare function as exported and set
proper calling convention to stdcall (VBA require this convention)

#defi ne DLLEXPORT __decl spec(dl | export)
#define STDCALL __stdcall
voi d DLLEXPORT STDCALL DI | foo(int paramns){}

2. Cdling procedure or method in VBA or .NET requires to declare function prototype with its parameters,
obtain its pointer and then it is possible to call it :

/I @) declare function with one parameter :
typedef int (STDCALL *METHODPTR) (int limt);

/Iglobal variable to hold pointer to the method
METHODPTR Met hodQ= NULL;

/I b) function to set method pointer (will be called from VBA or .NET)
i nt DLLEXPORT STDCALL dI | _set Met hodPoi nter (void (*MethodPtr) (void)){
return Met hodQ = (METHODPTR) Met hodPtr;

/I ¢) function to invoke method stored in MethodQ variable

int DLLEXPORT STDCALL dl | _call Method (short limt){
return (MethodQ ? MethodQlimt): FALSE);

}

dll zetMethodPointer

Mathodd

-

dl l_.:-alll!'[et]u:pd

"l
-

Figure2 Incomming and outgoing functionsin DLL

There are different functions for VBA, .NET, MDL and Javain nativelib.dll to enable calling between them.

Designing VBA to call DLL code

VBA can invoke any standard DLL function in very simple and straightforward way. This possibility alow to
call Window's APl or MDL built in functions (from version 8.00.02). For instance, to call MDL function for opening
dialog box you need to declare at global section of VBA code imported function from stdmdlbltin.dll, then it is pos-
sibleto call it:

Private Declare Function ndl Di al og_openl nf oBox_
Lib "stdmdl bl tin" (ByVal pronpt As String) As Long

Private Sub User Form Acti vate()

mdl Di al og_openl nfoBox ("called from VBA")
End Sub

Designing .NET to call DLL code

.NET allowsto call native (unmanaged) functions that are implemented in aDLL via Platform Invocation Serv-
ices (PInvoke). The called function in DLL need not to be declared as standard :

Second Quarter 2002 37 ControlAltDelete

public class DLLW ap{
[DIInmport("ustation.dl "™, CallingConvention=CallingConvention. Cdecl)]
public static extern int ndl Di al og_openl nfoBox(String nessage);

}

private void Button_Click(object sender, System EventArgs e){
DLLW ap. mdl Di al og_openl nf oBox(" nmessage from . NET");

}

Designing VBA to accept calls from DLL

DLL isableto cal VBA procedures through its pointer (see above). We need to set the proper procedure pointer
first with help of AddresOf operator and than call DLL function to store the pointer for later invocation of VBA
method :

'‘Define afunction to be called from DLL in VBA module:

Public Sub OnVBACal | (ByVal Iimt As Long)

VBANonModal . Label 1 = "VBA got " + Str$(limt)

End Sub

' Declare function from DLL which accept pointer to the VBA method:
Private Declare Function dl| _set VBAMet hodPoi nt er _
Lib "nativeLib.dlI" (ByVal pMethod As Any) As Long

' Call the DLL function to set pointer on method OnVBACall
Private Sub User Form Acti vate()

Cal | dlIl _set VBAMet hodPoi nt er (AddressOF OnVBACal |)
End Sub

Designing .NET to accept calls from DLL

The .NET Framework defines a special type called Delegate that provides the functionality of atype-safe func-
tion pointer. We need to design method to be called from DLL, declare and call the native DLL function to set method
pointer:

/ldeclare signature of called method through a delegate

public del egate void OnNETCal | Del egate(int limt);

public class DLLW ap{

/I declare member onNetCallRef to hold method reference
public static OnNETCal | Del egat e onNet Cal | Ref =
new OnNETCal | Del egate (DLLW ap. OnNETCal |) ;

/I declare member to refer to Form (dialog box)
public static NetForm net For nRef ;
[DilInport("nativeLib.dlI[")]
public static extern int
dl | _set NETMet hodCal | (OnNETCal | Del egat e net hod) ;

/I receiving method of DLL call
public static void OnNETCall (int limt){

net For mRef . set Li mi t ToNet Forn(limt);
}

}
/I aclass of Form
public class NetForm: System W ndows. For nms. For m{
publ i c Net Form(){
/I set reference to thisform
DLLW ap. net FormRef = this;

/I set method to accept dil calls
DLLW ap. dl | _set NETMet hodCal | (DLLW ap. onNet Cal | Ref) ;

}

Wrapping .NET into COM

.NET Framework provides COM callable Wrapper (CCW) enabling an arbitrary COM client to seamlessly call a
method on a.NET object. .NET object appears to COM clients just as if it were a native COM object. This
feature fits perfectly to the VBA concept which provide easy way to call COM methods and manage COM events.
CCW makes COM object from .NET just as simple as possible:

ControlAltDelete 38 Second Quarter 2002

/I declare delegate for events
public del egate void onTransm tDel egateVba(int limt);

/Il define interfaces InterfaceType identifies
/I how to expose an interface to COM
[InterfaceType(Com nterfaceType.|Interfacel sDual)]
public interface I Transmt{
[Displd(1)]
int setLimtToNetForm(int limt);
}

[/l interface to sink events by COM clients
[InterfaceTypeAttri bute(Com nterfaceType.|lnterfacelslDi spatch)]
public interface | Transm t Event{
[Displd(1)]
void OnTransmi t EventVba(int limt);
}

/I define class inherited from interface

[ConSour cel nterfaces(typeof (I Transm t Event))]

[C asslinterface(C asslnterfaceType. Aut oDual)]

public class NetForm: System W ndows. Forms. Form | Transm t {

/I declare event
public event onTransm t Del egat eVba OnTransni t Event Vba;
/I implement interface
public int setLimtToNetForm (int limt){
this. Label Rec. Text= ".NET Formgot " + limt.ToString();
return limt;

}
/I raising event handled by the COM sink
private void ButtonCall Vba_Cick
(obj ect sender, System EventArgs e){
OnTransmi t Event Vba(Convert. Tol nt 16(thi s. Text Li m t VBA. Text));
}
}

VBA client would use this object as ordinary COM:

‘declare events and NetForm object
Dim WthEvents Net Event As Net Form
Di m dot Net Form As New NETobj ect . Net For m

‘'show form, set event handle to COM aobject
Private Sub User Form Activate()
dot Net For m Show
Set Net Event = dot Net Form
End Sub

‘call .NET method when button is pressed
Private Sub Button_OnNet _Cick()

dot Net Form set Li mi t ToNet Form (Val (NETLi mi t. Text))
End Sub

Public Sub Net Event _OnTransmit Event Vba(ByVal [imt As Long)
VBANonMobdal . Label 1 = "VBA got from.NET " + Str$(limt)
End Sub

Accessing MicroStationDGN object from .NET

Calling COM object is possible via callable wrapper (RCW). RCW serves as proxy which exposes COM aobjects
for .NET Framework, thus .NET clients may call any COM client. Thus we may deploy whole MicroStation DGN
object into .NET application.

A .NET client (event sink) can receive events raised by an existing COM server (event source). COM interop
generates the necessary delegates in metadata that you include in your managed client. An imported delegate sigha-
ture comprises the sink event interface, an underscore, the event name, and the word EventHandler:
SnkEventinterface EventNameEventHandler.

Second Quarter 2002 39 ControlAltDelete

M cr oSt ati onDGN. Appl i cati on nmsApps = new M croStati onDGN. Application();

/I set COM property

nmsApps. Caption = " Caption set by .NET";
M cr oSt ati onDGN. Vi ew nsVi ew,

nmsVi ew = nsApps. Acti veDesignFile. Views[1];

/I do zoom on view 1
nmsVi ew. Zoon(2) ;
nmsVi ew. Redraw() ;

/I wire event handler for OnDesignFileClosed event

M croStati onDGN. __Applicati onEvents_OnDesi gnFi | eCl osedEvent Handl er
Desi gnEvent Cl ose = new

M croStati onDGN. __Applicati onEvents_OnDesi gnFi | eCl osedEvent Handl er
(OnDesi gnC ose) ;

ms Apps. OnDesi gnFi | eCl osed += Desi gnEvent Cl ose;

/I event handler
static void OnDesignCl ose(String desi gnNane) {
MessageBox. Show(". NET recieved File C ose event + designNane");

}

Final words

It has been shown how to interoperate among DLL, .NET and VBA code. Moreover, you may download com-
plete code for this article to test interoperability. In acode for this article there is actually more done. There are dialog
boxes created in MDL, Java, VBA and .NET which serve as a test for application interaction, see Figure 3. In VBA
code, some tricks are used to allow VBA and .NET Forms to be displayed behind ordinary MDL dialog boxes and
behave as child window of MicroStation.

&

Call MOL function Call Mdl Function | with value |10 mdlDialog_open
Call ¥BA method Call Java Method | with value |10 DGM automation
Call MNET method | Call WEB& method | with walue 10

JovEel MET Farm gat 108 ™

—- Zall Java Method

with number | 500

Call Java Method | with number [40 Call Mdl Funckion | with number | 400
Call VB4 Method | with number [50 |Ca|| MET method | With number | 800

di| with number [108 YE& got 50

kDL got: 400

Figure 3 Dialog boxes for interaction between MDL, Java, VBA and .NET

We can use all good features of particular language for our solution. Most promising isto use .NET together with
MDL compiled into native code. Moving MDL code into native DLL would save one step in interaction between dif-
ferent platforms and MDL.. NET platform is no doubt ready for MicroStation software solution. We may use it even
instead of VBA with possibilities to write the application in C#, VB.NET, VC.NET or other. These examples were
compiled using Java 2 SE, VBA v.6, VC++NET 7 , CANET 7, and MicroStation V8 (08.00.02.20) compilers runing
on Windows XP Pro.

About The Author

Sanislav Sumbera, Ph.D. is a MicroStation software developer for the Berit Group (www.berit.com). The pro-
gramming code in this article is offered to the MicroSation community, asis*, without any responsibility for its use
elsewhere. You may contact Stanislav Sumbera at ssumbera@berit.cz.

CAD

ControlAltDelete 40 Second Quarter 2002

